Solar Power World

  • Home
  • Top Solar Contractors
  • Articles
    • Most Recent Posts
    • News
      • Latest News Items
      • Solar tariffs
    • Featured
      • Latest Feature Stories
      • Contractor’s Corner
      • Trends in Solar
      • The Solar Explorer
  • Policy
    • Monthly Snapshots
  • Markets
    • Residential
    • Commercial
    • Community Solar
    • Utility
  • Products
    • 2021 Top Products
    • Batteries and Storage
    • Inverters
      • Global Manufacturing Locations
    • Racking and Mounting
    • Software
    • Solar Panels
      • U.S. solar panel manufacturers
      • Global Manufacturing Locations
  • Subscribe
  • Resources
    • About SPW
    • Digital Issues
    • Event Coverage
    • Podcasts
    • Product Manufacturing Locations
      • Global Inverter Manufacturing Locations
      • Global Solar Panel Manufacturing Locations
      • U.S. solar panel manufacturers
    • Solar Classrooms
    • Suppliers
    • Videos
    • Webinars / Digital Events
    • Whitepapers
  • Leadership
    • Vote for the 2022 Leaders!
    • 2021 Winners
    • 2020 Winners
    • 2019 Winners
    • 2018 Winners

What is a half-cell solar panel?

By Kelly Pickerel | October 24, 2018

Share

Panel trends have a way of quickly becoming mainstream. IHS Markit predicted that passivated emitter rear cells (PERC) technology would go from a blip in the market in 2014 to mainstream by 2020—a prediction confirmed by anyone looking at panel models released this year. PERC is here to stay.

ITRPV half cell

Different cell dimensions. Source: ITRPV

The next technology on that mainstream path is half-cell designs. The ninth edition of the International Technology Roadmap for Photovoltaic (ITRPV) predicts the market share of half cells will grow from 5% in 2018 to nearly 40% in 2028.

Half-cell modules have solar cells that are cut in half, which improves the module’s performance and durability. Traditional 60- and 72-cell panels will have 120 and 144 half-cut cells, respectively. When solar cells are halved, their current is also halved, so resistive losses are lowered and the cells can produce a little more power. Smaller cells experience reduced mechanical stresses, so there is a decreased opportunity for cracking. Half-cell modules have higher output ratings and are more reliable than traditional panels.

“When considering a solar installation, the idea of ‘more’ is at the forefront—produce more energy, save (or earn) more money and do more good for the environment,” said Cemil Seber, VP of global marketing and product management for module manufacturer REC. “In the case of rooftops where there is a limited amount of space available, using solar panels with half-cut cell technology can help.”

REC is a half-cell pioneer, first introducing the design in 2014. The company’s TwinPeak half-cell module series effectively turns each panel into two twin panels. Since the cells are smaller, inter-cell spacing doesn’t have to be as wide and they can be placed closer together. This allows REC to separate the panel into two. Independent upper and lower module halves lead to improved shading response. If the bottom half of a module is shaded, the top half will still perform.

REC half cell

REC’s polycrystalline TwinPeak half-cell module (left) and its monocrystalline N-Peak half-cell module (right)

REC has pushed the boundaries with half-cell designs in polycrystalline modules. REC’s half-cell PERC polycrystalline modules have reached 300 W, and they can compete with full-cell modules in the more efficient monocrystalline class. The company has been so impressed by the advantages of half-cells, it is transitioning all its manufacturing lines to the new technology.

“Since 2014, REC has been continuously transferring its production lines to half-cut cell technology,” Seber said. “Today, all but one of our module production lines in Singapore have been equipped for half-cut cell technology.”

During the 2018 tradeshow swing, REC released its new N-Peak series of modules, the company’s first stab at monocrystalline half-cells for even higher efficiency and output—up to 330 W in a traditional 60-cell footprint.

Other manufacturers have also started half-cell designs in the monocrystalline class. LONGi Solar recently exceeded 360 W in testing with its 120-cell half-cut monocrystalline PERC module. Hanwha Q CELLS received the Intersolar Award 2018 Photovoltaics category for its Q.PEAK DUO-G5 solar module—a 120-half-cell, six-busbar monocrystalline module. The Hanwha module uses round wires instead of flat ribbons for busbars to reduce shading on the cells. Hanwha also has half-cut designs for the 72-cell market, although in polycrystalline. Its Q. PLUS DUO L-G5.2 is a polycrystalline half-cell module with a maximum output of 370 W.

Hanwha Q half cell

Half-cut cells  (Photo from Hanwha Q CELLS SPI 2017 booth)

Since half-cell designs are the hottest trend right now, a manufacturer just has to update a few things on its lines to keep up. The two challenges with switching full-cell manufacturing to half-cell designs is the cell cutting and the stringing process. Since half-cells are usually PERC cells to begin with, the cell itself is quite fragile. Laser-cutting the cell down the middle without cracking it is a delicate process. Half-cells often use four or more busbars. Stringing these very narrow connection strips across a smaller footprint requires the use of precise equipment. Junction boxes are also different on half-cell modules. Most brands use multiple, smaller junction boxes so each module half can function as its own. Otherwise, half-cell module assembly is like full-cell production.

Since half-cell modules produce more power and are more efficient and reliable than their full-cell counterparts, their use can lead to time and money savings for the installer.

“By delivering more power per square meter, fewer panels are required to generate the same power,” Seber said. “This means quicker installation times and the need for fewer components such as clamps and racks—all of which reduces the overall costs.”

About The Author

Kelly Pickerel

Kelly Pickerel has over a decade of experience reporting on the U.S. solar industry and is currently editor in chief of Solar Power World.

Comments

  1. Lovemore Ngulube says

    August 31, 2021 at 10:25 am

    Are splits cell panel wired in series then parallel .As compared to the traditional panel which one is likely to have high amp.

    Reply
  2. Tree Trimming Charleston says

    July 14, 2021 at 12:03 pm

    I didn’t realize split cells and full cells essentially no difference in wattage output – aside from shading.

    Reply
  3. YASH KUMAR says

    June 4, 2021 at 2:21 am

    Fantastic post! Ms. Kelly

    I have a question.

    By cutting the solar cells into 2 equal parts, it is true that the resistance is also reduced by 50% of each cell but the overall resistance of the complete solar panel remains the same.

    Is it not that?

    Or

    Do we connect the half-cut solar panels in such a pattern of series and parallel combination that the overall resistance is less than it was when the cells were not cut?

    I hope you understood my question.

    Eagerly waiting for your reply.

    Thank you

    Yash 🙂

    Reply
  4. Wesley says

    May 17, 2021 at 10:53 am

    Great to see and read quality resources in regards to solar, more information needs be put out there for customers.

    Reply
  5. Ryan Jones says

    May 13, 2021 at 1:14 pm

    why are half cell panels more reliable that full cell panels ?

    Reply
    • Andrew says

      December 22, 2021 at 3:09 pm

      I guess because when bending occurs from thermal expansion, wind or people moving the panels, the panels can bend at the joints instead of potentially cracking the cells.

      Reply
  6. Bill says

    October 25, 2019 at 10:02 am

    So where do the mIcro inverters mount when cables are in the middle? How to keep cables up off the roof?

    Reply
  7. Anthony Maciorski says

    March 3, 2019 at 9:44 am

    Are they basically two modules in parallel?

    Reply
    • Kelly Pickerel says

      March 4, 2019 at 8:08 am

      Kind of, yes. But two smaller, square modules.

      Reply
  8. Brenden Owens says

    March 2, 2019 at 4:23 pm

    For some microinverters that are currently compatible with 60 cell and 72 cell solar panels like APSystems and Enphase, do 120split cell and 144 split solar modules still work with these types of inverters??

    Reply
    • Kelly Pickerel says

      March 4, 2019 at 8:13 am

      That’s a really good question. I’ll try to find an answer.

      Reply
      • Wilfredo S Busgano says

        October 29, 2020 at 8:27 am

        I have also same question and concern for my design to consider Ms. Kelly, hope you can address our concern.

        “For some microinverters that are currently compatible with 60 cell and 72 cell solar panels like APSystems and Enphase, do 120split cell and 144 split solar modules still work with these types of inverters??”

        Reply
        • Kelly Pickerel says

          October 29, 2020 at 8:43 am

          The answer is yes, microinverters can work with half-cell solar panels, but check which model of microinverter you have for specific compatibility. Enphase states in its datasheets that its more recent micorinverters (7 and higher) do work with half-cell panels, but older versions may not.

          Reply
    • ampfan says

      March 31, 2019 at 10:12 pm

      Yes, split cell panels behave exactly like full cell panels of equivalent wattage. They just don’t suffer as much when shade hits just one section. e.g. from the bottom when in portrait mode. If shade hits both sections they loose output just as a full cell panel would. Electrically they still have just two wires out.
      The inverter can’t tell the difference between low output from shading and low irradience.

      Reply
      • MrDIY says

        September 28, 2020 at 3:19 pm

        This is a great question. Most of the Enphase microinverters indicate on their spec sheet that they support 120 and 144 cell modules.
        The AP Systems only mention 60 and 72 cell, but they still should support them. As always, double check your module Voc and Isc to confirm and check with a sales rep.

        Reply
  9. Bruce E Arkwright Jr says

    January 3, 2019 at 7:36 am

    So are they just offering this at a higher voltage or are they giving you two sets of outputs so you have the option to go either 24 volt or 48 volt? If you went 24 v you would be more shade resistant…

    Reply
    • ampfan says

      March 31, 2019 at 10:13 pm

      The output of the two sections is wired in parallel, so NO, you don’t get to do 48 volts.

      Reply

Tell Us What You Think! Cancel reply

Related Articles Read More >

Ingeteam unveils 7.65-MW inverter power station on skid
CPS America opens new U.S. headquarters near Dallas, Texas
Solar FlexRack trackers used in 15-MW Arizona community solar project
Behind-the-meter hardware SolShare allows for on-site solar sharing at apartment complexes

SPW Digital Editions

Solar Power World Digital EditionBrowse the current issue and archived issues of Solar Power World in an easy-to-use, high-quality format. Bookmark, share and interact with the leading solar construction magazine today.

Contractor's Corner Podcast

June 27, 2022
Contractor's Corner: Got Electric
See More >

Solar Policy Snapshot

Solar policy differs across state lines and regions. Click to see our monthly roundup of recent legislation and research throughout the country.

Read More >

Solar Power World
  • Top Solar Contractors
  • Solar Articles
  • Windpower Engineering & Development
  • Battery Power Tips
  • Top Products
  • Leadership
  • About/Contact Us
  • Subscribe
  • Advertising
  • WTWH Media

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Solar Power World

  • Home
  • Top Solar Contractors
  • Articles
    • Most Recent Posts
    • News
      • Latest News Items
      • Solar tariffs
    • Featured
      • Latest Feature Stories
      • Contractor’s Corner
      • Trends in Solar
      • The Solar Explorer
  • Policy
    • Monthly Snapshots
  • Markets
    • Residential
    • Commercial
    • Community Solar
    • Utility
  • Products
    • 2021 Top Products
    • Batteries and Storage
    • Inverters
      • Global Manufacturing Locations
    • Racking and Mounting
    • Software
    • Solar Panels
      • U.S. solar panel manufacturers
      • Global Manufacturing Locations
  • Subscribe
  • Resources
    • About SPW
    • Digital Issues
    • Event Coverage
    • Podcasts
    • Product Manufacturing Locations
      • Global Inverter Manufacturing Locations
      • Global Solar Panel Manufacturing Locations
      • U.S. solar panel manufacturers
    • Solar Classrooms
    • Suppliers
    • Videos
    • Webinars / Digital Events
    • Whitepapers
  • Leadership
    • Vote for the 2022 Leaders!
    • 2021 Winners
    • 2020 Winners
    • 2019 Winners
    • 2018 Winners