Solar Power World

  • Home
  • Top Solar Contractors
    • 10th Anniversary Roundtables
  • Articles
    • Most Recent Posts
    • News
      • Latest News Items
      • Solar tariffs
    • Featured
      • Latest Feature Stories
      • Contractors Corner
      • Trends in Solar
      • The Solar Explorer
  • Policy
    • Monthly Snapshots
  • Markets
    • Residential
    • Commercial
    • Community Solar
    • Utility
  • Products
    • 2020 Top Products
    • Batteries and Storage
    • Inverters
      • Global Manufacturing Locations
    • Racking and Mounting
    • Software
    • Solar Panels
      • U.S. solar panel manufacturers
      • Global Manufacturing Locations
  • Subscribe
  • Resources
    • About SPW
    • Digital Issues
    • Event Coverage
    • Leadership
      • 2020 Winners
      • 2019 Winners
      • 2018 Winners
    • Podcasts
    • Product Databases
      • Solar Inverter Models
      • Solar Panel Models
      • Solar Racking Models
      • Battery Storage Models
    • Product Manufacturing Locations
      • Global Inverter Manufacturing Locations
      • Global Solar Panel Manufacturing Locations
      • U.S. solar panel manufacturers
    • Solar Classrooms
      • Inverters
      • Solar panels
      • Roof-mount systems
      • Ground-mount systems
      • Residential energy storage systems
    • Suppliers
    • Videos
    • Webinars / Digital Events
    • Whitepapers

Solar+saffron experiment could pave the path to more dual-use farms

By Billy Ludt | February 11, 2019

Share

Solar modules take a note from plant life, following a similar pattern of absorbing sunlight, processing it and producing energy (or in a plant’s case, creating nutrients that are consumed and converted into energy). Now, solar companies are pairing the photo-cousins to explore better land use practices and the possible benefits of growing crops under or near solar panels.

Saffron blooms underneath a solar panel in Vermont, its red stigma awaiting harvest. The University of Vermont and local solar developer Peck Solar are testing how the valuable spice will fare while paired with a solar array. University of Vermont

The Center for Saffron Research & Development at the University of Vermont (UVM) started growing the lucrative crop of its namesake underneath solar panels about a year ago after Steve Yates, project director at local solar EPC Peck Solar, approached the center with an idea and some money. Peck Solar provided grant funding for a two-year research effort to plant saffron bulbs underneath a 150-kWac/220-kWdc solar array at the Gervais Family Farm in New Haven, Vermont.

“The hope would be that it could be demonstrated that a crop can be produced economically on that same area,” said UVM entomologist Margaret Skinner. “It’s good for the environment, it’s good for the farmer whose land it is and it’s good for the solar people that are putting up arrays.”

Saffron is a crocus generally harvested in arid climates. The spice is historically grown in the Middle East, Italy and Spain, but was also harvested in the United Kingdom and grown by the Pennsylvania Dutch in the 1600s. Saffron is a late-season crop, blooming well into autumn in the United States.

“Our hope is that we can show that the land is still agriculture and we can create a viable crop and bring a market and be able to say, ‘No, this has not taken the land out of agricultural use,’” Yates said. “It’s keeping agriculture in use, in fact. We can double the value of this land to the farmer.”

Saffron was planted in 12 test beds, made of three rows of four—the first in front of the solar array, second under the panels and third behind them. The spice made it through its first grow season in Vermont, and the test will finish after the next. Peck Solar

The soil that saffron bulbs are planted in can be walked on, allowing for easy array maintenance when not in bloom; and shallow-rooted crops can be planted above saffron during the offseason.

It’s also the most sought-after spice in the world, trading at up to $5,000/lb.

Saffron’s value stems from how little can be harvested per plant and from its culinary and supposed medicinal applications. The deep red stigma of saffron in bloom, which only grows in threes in the center of the flower, are harvested during a sunny morning and subsequently dried.

“The beauty of saffron over some of the other crops is it’s a pretty easy, low-maintenance crop, except when you’re picking and processing the flowers,” Skinner said. “Once you get a good saffron bed established, they can sort of take care of themselves. In my mind, it is an ideal partnership for solar arrays.”

The simplicity of growing saffron along with its possible return on investment is why Peck Solar chose the crop for its dual-land-use experiment. The Center for Saffron Research has been exploring the possibility of growing saffron in the Northeast for four years and can show regional solar engineers that they can look beyond “counting kilowatts.” They can expand planning on agricultural sites to include crops like saffron with solar panels, Skinner said.

The Gervais Family Farm solar array was installed in December 2014, and the saffron was added in August 2018. The solar install consists of 748 Trina 295-W modules set in portrait orientation in Schletter FS racking, and its energy output goes to a local municipal building.

Saffron isn’t the sole solar and agriculture coupling in the United States. In North Carolina, honeybee hives sit among a pollinator-friendly solar array; and sheep graze underneath raised ground mount solar panels.

“We see solar and agriculture as working well together,” said Olivia Campbell Andersen, executive director of Renewable Energy Vermont. “Some of the projects that have been deployed in Vermont show how well they work.”

Green field and mountain state

According to the Census of Agriculture, in 2012 there were 1.25 million acres of farmland in Vermont, composing about a fifth of the state’s total land mass. That number has decreased, and the land sold since has likely been commercially developed, but some farmers are staying in business by leasing fields for solar arrays.

The 150-kWac/220-kWdc solar array was built on a plot of greenfield on the Gervais Family Farm in 2014. Peck Solar

However, the agricultural community is concerned land that could be used for crops is sacrificed for solar installations. UVM and Peck Solar’s saffron and solar experiment aims to prove it’s possible to grow profitable crops below ground-mount solar panels in green fields.

“What we found is the saffron that’s growing directly under the array actually is stronger, healthier, more abundant than that which is on either side of it,” Yates said. “The correlation is that it creates the right environment here to grow healthy, strong saffron.” And once an array’s functional lifetime is up, it can be removed, and the field underneath is ready for agricultural use.

The final verdict on the viability of solar-plus-saffron won’t be determined until the two-year test is complete. Yates has theories as to why the yield was stronger under the panels—partial shading, controlled water run-off—but nothing is definitive yet.

The most eagerly anticipated answer of this last year’s testing is how the saffron fares through the winter under the panels.

“In the future, I think if universities, or agricultural R&D sections, have cooperation with solar technologies or farms, we can think about designing the solar farm based on agricultural things,” said UVM agroecologist Arash Ghalehgolabbehbahani. “We have to think about increasing the quality of soil for producing crops in the solar farms, and we have to have a clear approach for that.”

Legal hurdles on farmland

Vermont ranked third for total state solar power generation, accounting for about 11% of the state’s energy, and has the most solar jobs per capita. Yates said it’s a progressive solar state, but it has still encountered setbacks.

Saffron’s stigma must be harvested and dried on sunny mornings. The red tendrils are traded globally for thousands of dollars per pound. University of Vermont

State legislation requires net-metered projects to be built on designated sites. Net-metered solar projects can only be installed on greenfields if the array is between 150 and 500 kW, and if it is installed on land for agricultural use, the farm facilities must offtake at least 50% of an array’s power production.

“For a lot of developers and installers, it’s quite a blow, because that was a large portion of what we do in helping the farmer stay on their land [with solar leases],” Yates said. “We sought to find an alternative way to change the story.”

Farms lease land to solar arrays and commonly distribute the energy elsewhere. Yates hopes the findings of this study catch the attention of state legislators, making them reconsider the limitations current legislation enforces on green field and agricultural sites.

“There is no path saying if we grow saffron then we can do something,” Yates said. “It’s more a matter of trying to figure out a way to create a product that is more valuable that can change the way people think about solar and fields.”

About The Author

Billy Ludt

Billy Ludt is associate editor of Solar Power World.

Comments

  1. Alex DePillis says

    April 1, 2020 at 1:34 pm

    Lots of options these days in “agrivoltaics.” In Vermont, we call it “farming-friendly solar.”

    Reply
  2. SOL GA says

    February 19, 2019 at 9:19 am

    Option low growth tubers (like sweet potato) would yield much more produce …even if hand harvested.

    Reply
  3. Jen Daprato says

    February 14, 2019 at 12:50 pm

    What a super cool article.

    Reply

Tell Us What You Think! Cancel reply

Related Articles Read More >

4 critical soft skills of great leaders
Solar Basics (At Home!): How to mount a solar system to survive a hurricane
All about all-black solar panels
3 difficult battery storage objections and how to overcome them

Exclusive SPW Content

Videos Podcasts Webinars Whitepapers

SPW Digital Editions

Solar Power World Digital EditionBrowse the current issue and archived issues of Solar Power World in an easy-to-use, high-quality format. Bookmark, share and interact with the leading solar construction magazine today.

Solar Policy Snapshot

Solar policy differs across state lines and regions. Click to see our monthly roundup of recent legislation and research throughout the country.

Read More >

Popular Posts See More >

Solar investment tax credit extended at 26% for two additional years
SolarJuice American to take over consumer contracts of bankrupt residential solar installer Petersen-Dean
What the Biden administration could mean for solar and storage
The changing state of retiring solar panels
Solar Power World
  • Top Solar Contractors
  • Solar Articles
  • Top Products
  • Leadership
  • WTWH Media
  • About/Contact Us
  • Advertising
  • Subscribe
  • Windpower Engineering & Development

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Solar Power World

  • Home
  • Top Solar Contractors
    • 10th Anniversary Roundtables
  • Articles
    • Most Recent Posts
    • News
      • Latest News Items
      • Solar tariffs
    • Featured
      • Latest Feature Stories
      • Contractors Corner
      • Trends in Solar
      • The Solar Explorer
  • Policy
    • Monthly Snapshots
  • Markets
    • Residential
    • Commercial
    • Community Solar
    • Utility
  • Products
    • 2020 Top Products
    • Batteries and Storage
    • Inverters
      • Global Manufacturing Locations
    • Racking and Mounting
    • Software
    • Solar Panels
      • U.S. solar panel manufacturers
      • Global Manufacturing Locations
  • Subscribe
  • Resources
    • About SPW
    • Digital Issues
    • Event Coverage
    • Leadership
      • 2020 Winners
      • 2019 Winners
      • 2018 Winners
    • Podcasts
    • Product Databases
      • Solar Inverter Models
      • Solar Panel Models
      • Solar Racking Models
      • Battery Storage Models
    • Product Manufacturing Locations
      • Global Inverter Manufacturing Locations
      • Global Solar Panel Manufacturing Locations
      • U.S. solar panel manufacturers
    • Solar Classrooms
      • Inverters
      • Solar panels
      • Roof-mount systems
      • Ground-mount systems
      • Residential energy storage systems
    • Suppliers
    • Videos
    • Webinars / Digital Events
    • Whitepapers